Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835460

RESUMO

Regenerative therapy for tissues by mesenchymal stem cell (MSCs) transplantation has received much attention. The cluster of differentiation (CD)146 marker, a surface-antigen of stem cells, is crucial for angiogenic and osseous differentiation abilities. Bone regeneration is accelerated by the transplantation of CD146-positive deciduous dental pulp-derived mesenchymal stem cells contained in stem cells from human exfoliated deciduous teeth (SHED) into a living donor. However, the role of CD146 in SHED remains unclear. This study aimed to compare the effects of CD146 on cell proliferative and substrate metabolic abilities in a population of SHED. SHED was isolated from deciduous teeth, and flow cytometry was used to analyze the expression of MSCs markers. Cell sorting was performed to recover the CD146-positive cell population (CD146+) and CD146-negative cell population (CD146-). CD146 + SHED without cell sorting and CD146-SHED were examined and compared among three groups. To investigate the effect of CD146 on cell proliferation ability, an analysis of cell proliferation ability was performed using BrdU assay and MTS assay. The bone differentiation ability was evaluated using an alkaline phosphatase (ALP) stain after inducing bone differentiation, and the quality of ALP protein expressed was examined. We also performed Alizarin red staining and evaluated the calcified deposits. The gene expression of ALP, bone morphogenetic protein-2 (BMP-2), and osteocalcin (OCN) was analyzed using a real-time polymerase chain reaction. There was no significant difference in cell proliferation among the three groups. The expression of ALP stain, Alizarin red stain, ALP, BMP-2, and OCN was the highest in the CD146+ group. CD146 + SHED had higher osteogenic differentiation potential compared with SHED and CD146-SHED. CD146 contained in SHED may be a valuable population of cells for bone regeneration therapy.


Assuntos
Osteogênese , Células-Tronco , Dente Decíduo , Humanos , Antígeno CD146/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Polpa Dentária/metabolismo , Osteocalcina/metabolismo , Células-Tronco/citologia , Dente Decíduo/citologia
2.
Cells ; 11(20)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291089

RESUMO

In this study, we assessed the effects of human deciduous dental pulp-derived mesenchymal stem cell-derived conditioned medium (SHED-CM) on the properties of various cell types. The effects of vascular endothelial growth factor (VEGF) in SHED-CM on the luminal architecture, proliferative ability, and angiogenic potential of human umbilical vein endothelial cells (HUVECs) were determined. We also investigated the effects of SHED-CM on the proliferation of human-bone-marrow mesenchymal stem cells (hBMSCs) and mouse calvarial osteoblastic cells (MC3T3-E1) as well as the expression of ALP, OCN, and RUNX2. The protein levels of ALP were examined using Western blot analysis. VEGF blockade in SHED-CM suppressed the proliferative ability and angiogenic potential of HUVECs, indicating that VEGF in SHED-CM contributes to angiogenesis. The culturing of hBMSCs and MC3T3-E1 cells with SHED-CM accelerated cell growth and enhanced mRNA expression of bone differentiation markers. The addition of SHED-CM enhanced ALP protein expression in hBMSCs and MT3T3-E1 cells compared with that of the 0% FBS group. Furthermore, SHED-CM promoted the metabolism of HUVECs, MC3T3-E1 cells, and hBMSCs. These findings indicate the potential benefits of SHED-CM in bone tissue regeneration.


Assuntos
Meios de Cultivo Condicionados , Polpa Dentária , Células Endoteliais da Veia Umbilical Humana , Células-Tronco Mesenquimais , Osteoblastos , Dente Decíduo , Animais , Humanos , Camundongos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Polpa Dentária/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Dente Decíduo/citologia
3.
Neurosci Lett ; 769: 136392, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34902517

RESUMO

Stem cells from human exfoliated deciduous teeth (SHED) have stromal-derived inducing activity (SDIA): which means these stromal cells induce neural differentiation where they are used as a substratum for embryonic stem cell (ESCs) culture. Recent studies show that mitochondria or mitochondrial products, as paracrine factors, can be released and transferred from one cell to another. With this information, we were curious to know whether in the SDIA co-culture system, SHED release or donate their mitochondria to ESCs. For this purpose, before co-culture, SHED s' mitochondria and ESCs s' cell membranes were separately labeled with specific fluorescent probes. After co-culture, SHED s' mitochondria were tracked by fluorescent microscope and flow cytometry analysis. Co-culture also performed in the presence of inhibitors that block probable transfer pathways suchlike tunneling nanotubes, gap junctions or vesicles. Results showed that mitochondrial transfer takes place from SHED to ESCs. This transfer partly occurs by tunneling nanotubes and not through gap junctions or vesicles; also was not dependent on intracellular calcium level. This kind of horizontal gene transfer may open a new prospect for further research on probable role of mitochondria on fate choice and neural induction processes.


Assuntos
Comunicação Celular , Estruturas da Membrana Celular/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/fisiologia , Cálcio/metabolismo , Linhagem Celular , Técnicas de Cocultura/métodos , Matriz Extracelular/metabolismo , Junções Comunicantes/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Mitocôndrias/metabolismo , Nanotubos , Dente Decíduo/citologia
4.
J Leukoc Biol ; 111(5): 1043-1055, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34622984

RESUMO

Mesenchymal stem cell transplantation (MSCT) regulates immune cells, and is a promising therapeutic approach for treating autoimmune diseases. Stem cells from human exfoliated deciduous teeth (SHED) are a unique postnatal stem cell population from the cranial neural crest with high self-renewal, multipotent differentiation, and superior immunomodulatory properties. However, the mechanisms by which SHED can treat autoimmune diseases remain unclear. Sjögren's syndrome (SS) is an autoimmune disease histologically characterized by high lymphocytic infiltration in the salivary and lacrimal glands that results in dryness symptoms. This study explores the potential of systemic transplantation of SHED to ameliorate SS-induced dryness symptoms in mice. Overall, SHED could rescue the balance of regulatory T cell (Treg)/T helper cell 17 (Th17) in the recipient SS mice. Mechanistically, SHED promoted Treg conversion and inhibited Th17 function via paracrine effects, which were related to the secretion of soluble programmed cell death ligand 1 (sPD-L1). Moreover, it directly induced Th17 apoptosis via cell-cell contact, leading to the up-regulation of Treg and down-regulation of Th17 cells. In summary, SHED-mediated rescue of Treg/Th17 balance via the sPD-L1/PD-1 pathway ameliorates the gland inflammation and dryness symptoms in SS mice. These findings suggest that SHED are a promising stem cell source for the treatment of autoimmune diseases in the clinical setting.


Assuntos
Antígeno B7-H1 , Síndrome de Sjogren , Transplante de Células-Tronco , Animais , Antígeno B7-H1/metabolismo , Camundongos , Síndrome de Sjogren/terapia , Células-Tronco , Células Th17 , Dente Decíduo/citologia
5.
Cell Transplant ; 30: 9636897211042927, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34633878

RESUMO

Stem cells in different types may interact with each other to maintain homeostasis or growth and the interactions are complicated and extensive. There is increasing evidence that mesenchymal-epithelial interactions in early morphogenesis stages of both tooth and hair follicles show many similarities. In order to explore whether stem cells from one tissue could interact with cells from another tissue, a series of experiments were carried out. Here we successfully extracted and identified stem cells from human exfoliated deciduous teeth (SHED) of 8-12 years old kids, and then found that SHED could promote hair regeneration in a mouse model. In vitro, SHED shortened the hair regeneration cycle and promoted the proliferation and aggregation of dermal cells. In vivo, when SHED and skin cells of C57 mice were subcutaneously co-transplanted to nude mice, more hair was formed than skin cells without SHED. To further explore the molecular mechanism, epidermal and dermal cells were freshly extracted and co-cultured with SHED. Then several signaling molecules in hair follicle regeneration were detected and we found that the expression of Sonic Hedgehog (Shh) and Glioma-associated oncogene 1 (Gli1) was up-regulated. It seems that SHED may boost the prosperity of hairs by increase Shh/Gli1 pathway, which brings new perspectives in tissue engineering and damaged tissue repairing.


Assuntos
Folículo Piloso/fisiologia , Transplante de Células-Tronco/métodos , Engenharia Tecidual/métodos , Dente Decíduo/metabolismo , Animais , Proliferação de Células , Criança , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Regeneração , Dente Decíduo/citologia
6.
Sci Rep ; 11(1): 20053, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625639

RESUMO

The effects of stem cells from human exfoliated deciduous teeth (SHED) on mechanical allodynia were examined in mice. A single intravenous injection of SHED and conditioned medium from SHED (SHED-CM) through the left external jugular vein significantly reversed the established mechanical allodynia induced by spinal nerve transection at 6 days after injection. SHED or SHED-CM significantly decreased the mean numbers of activating transcription factor 3-positive neurons and macrophages in the ipsilateral side of the dorsal root ganglion (DRG) at 20 days after spinal nerve transection. SHED or SHED-CM also suppressed activation of microglia and astrocytes in the ipsilateral side of the dorsal spinal cord. A single intravenous injection of secreted ectodomain of sialic acid-binding Ig-like lectin-9 and monocyte chemoattractant protein-1 had no effect on the established mechanical allodynia, whereas a single intravenous injection of protein component(s) contained in SHED-CM with molecular weight of between 30 and 50 kDa reversed the pain. Therefore, it may be concluded that protein component(s) with molecular mass of 30-50 kDa secreted by SHED could protect and/or repair DRG neurons damaged by nerve transection, thereby ameliorating mechanical allodynia.


Assuntos
Antígenos CD/metabolismo , Quimiocina CCL2/metabolismo , Hiperalgesia/terapia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Dente Decíduo/citologia , Animais , Antígenos CD/genética , Astrócitos/citologia , Astrócitos/metabolismo , Quimiocina CCL2/genética , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Medula Espinal/citologia , Medula Espinal/metabolismo
7.
Nanotechnology ; 33(6)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34700304

RESUMO

Carboxylated multi-wall carbon nanotube (MWCNT-COOH) presents unique properties due to nanoscale dimensions and permits a broad range of applications in different fields, such as bone tissue engineering and regenerative medicine. However, the cytocompatibility of MWCNT-COOH with human stem cells is poorly understood. Thus, studies elucidating how MWCNT-COOH affects human stem cell viability are essential to a safer application of nanotechnologies. Using stem cells from the human exfoliated deciduous teeth model, we have evaluated the effects of MWCNT-COOH on cell viability, oxidative cell stress, and DNA integrity. Results demonstrated that despite the decreased metabolism of mitochondria, MWCNT-COOH had no toxicity against stem cells. Cells maintained viability after MWCNT-COOH exposure. MWCNT-COOH did not alter the superoxide dismutase activity and did not cause genotoxic effects. The present findings are relevant to the potential application of MWCNT-COOH in the tissue engineering and regenerative medicine fields.


Assuntos
Nanomedicina , Nanotubos de Carbono/toxicidade , Células-Tronco , Engenharia Tecidual , Dente Decíduo/citologia , Ácidos Carboxílicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
8.
Sci Rep ; 11(1): 18778, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548598

RESUMO

Non-alcoholic steatohepatitis (NASH) occurrence has been increasing and is becoming a major cause of liver cirrhosis and liver cancer. However, effective treatments for NASH are still lacking. We examined the benefits of serum-free conditioned medium from stem cells derived from human exfoliated deciduous teeth (SHED-CM) on a murine non-alcoholic steatohepatitis (NASH) model induced by a combination of Western diet (WD) and repeated administration of low doses of carbon tetrachloride intraperitoneally, focusing on the gut-liver axis. We showed that repeated intravenous administration of SHED-CM significantly ameliorated histological liver fibrosis and inflammation in a murine NASH model. SHED-CM inhibited parenchymal cell apoptosis and reduced the activation of inflammatory macrophages. Gene expression of pro-inflammatory and pro-fibrotic mediators (such as Tnf-α, Tgf-ß, and Ccl-2) in the liver was reduced in mice treated with SHED-CM. Furthermore, SHED-CM protected intestinal tight junctions and maintained intestinal barrier function, while suppressing gene expression of the receptor for endotoxin, Toll-like receptor 4, in the liver. SHED-CM promoted the recovery of Caco-2 monolayer dysfunction induced by IFN-γ and TNF-α in vitro. Our findings suggest that SHED-CM may inhibit NASH fibrosis via the gut-liver axis, in addition to its protective effect on hepatocytes and the induction of macrophages with unique anti-inflammatory phenotypes.


Assuntos
Intestinos/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Células-Tronco/citologia , Dente Decíduo/citologia , Adulto , Animais , Apoptose , Células CACO-2 , Meios de Cultivo Condicionados , Microbioma Gastrointestinal , Humanos , Ativação de Macrófagos , Camundongos , Modelos Biológicos
9.
Tissue Cell ; 71: 101556, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34082260

RESUMO

Isolation of high-quality human postnatal stem cells from accessible sources is an important goal for dental tissue engineering. Stem cells from developing organs are a better cell source but are hard to obtain. With extensive caries that are difficult to restore, the extracted deciduous tooth with an immature apex is a developing organ for investigation. In the present study, a cell population from the tip of apical pulp of human deciduous teeth with an immature apex was isolated and termed apical pulp-derived cells of deciduous teeth (De-APDCs). De-APDCs expressed STRO-1, CD44, CD90 and CD105 but not CD34 or CD45. Furthermore, De-APDCs demonstrated a significantly higher clonogenic and proliferative ability and osteo/dentinogenic differentiation capacity than dental pulp cells from exfoliated deciduous teeth (De-DPCs) (P < 0.05). Differentiation potential toward adipogenic, neurogenic and chondrogenic lineages was also observed in induced De-APDCs. In addition, after De-APDCs were seeded into hydroxyapatite/tricalcium phosphate (HA/TCP) scaffolds and transplanted into nude mice, they were able to regenerate dentin/pulp-like structures aligned with human odontoblast-like cells. In conclusion, De-APDCs, which are derived from a developing tissue, represent an accessible and prospective cell source for tooth regeneration.


Assuntos
Antígenos de Diferenciação/biossíntese , Diferenciação Celular , Separação Celular , Polpa Dentária , Células-Tronco Multipotentes , Dente Decíduo , Animais , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Dente Decíduo/citologia , Dente Decíduo/metabolismo
10.
Cell Prolif ; 54(7): e13074, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34101281

RESUMO

OBJECTIVES: Pulp regeneration brings big challenges for clinicians, and vascularization is considered as its determining factor. We previously accomplished pulp regeneration with autologous stem cells from deciduous teeth (SHED) aggregates implantation in teenager patients, however, the underlying mechanism needs to be clarified for regenerating pulp in adults. Serving as an important effector of mesenchymal stem cells (MSCs), exosomes have been reported to promote angiogenesis and tissue regeneration effectively. Here, we aimed to investigate the role of SHED aggregate-derived exosomes (SA-Exo) in the angiogenesis of pulp regeneration. MATERIALS AND METHODS: We extracted exosomes from SHED aggregates and utilized them in the pulp regeneration animal model. The pro-angiogenetic effects of SA-Exo on SHED and human umbilical vein endothelial cells (HUVECs) were evaluated. The related mechanisms were further investigated. RESULTS: We firstly found that SA-Exo significantly improved pulp tissue regeneration and angiogenesis in vivo. Next, we found that SA-Exo promoted SHED endothelial differentiation and enhanced the angiogenic ability of HUVECs, as indicated by the in vitro tube formation assay. Mechanistically, miR-26a, which is enriched in SA-Exo, improved angiogenesis both in SHED and HUVECs via regulating TGF-ß/SMAD2/3 signalling. CONCLUSIONS: In summary, these data reveal that SA-Exo shuttled miR-26a promotes angiogenesis via TGF-ß/SMAD2/3 signalling contributing to SHED aggregate-based pulp tissue regeneration. These novel insights into SA-Exo may facilitate the development of new strategies for pulp regeneration.


Assuntos
Polpa Dentária/fisiologia , Exossomos/metabolismo , MicroRNAs/metabolismo , Neovascularização Fisiológica , Transdução de Sinais , Compostos de Anilina/farmacologia , Antagomirs/metabolismo , Compostos de Benzilideno/farmacologia , Diferenciação Celular/efeitos dos fármacos , Exossomos/transplante , Células Endoteliais da Veia Umbilical Humana , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Neovascularização Fisiológica/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Dente Decíduo/citologia , Fator de Crescimento Transformador beta/metabolismo
11.
J Cell Physiol ; 236(11): 7322-7341, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33934350

RESUMO

Mesenchymal stem cells (MSCs) have been identified within dental pulp tissues of exfoliated deciduous (SHEDs) and permanent (DPSCs) teeth. Although differences in their proliferative and differentiation properties were revealed, variability in SHEDs and DPSCs responsiveness to growth factors and cytokines have not been studied before. Here, we investigated the influence of interleukin-17 (IL-17) and basic fibroblast growth factor (bFGF) on stemness features of SHEDs and DPSCs by analyzing their proliferation, clonogenicity, cell cycle progression, pluripotency markers expression and differentiation after 7-day treatment. Results indicated that IL-17 and bFGF differently affected SHEDs and DPSCs proliferation and clonogenicity, since bFGF increased proliferative and clonogenic potential of both cell types, while IL-17 similarly affected SHEDs, exerting no effects on adult counterparts DPSCs. In addition, both factors stimulated NANOG, OCT4, and SOX2 pluripotency markers expression in SHEDs and DPSCs showing diverse intracellular expression patterns dependent on MSCs type. As for the differentiation capacity, both factors displayed comparable effects on SHEDs and DPSCs, including stimulatory effect of IL-17 on early osteogenesis in contrast to the strong inhibitory effect showed for bFGF, while having no impact on SHEDs and DPSCs chondrogenesis. Moreover, bFGF combined with IL-17 reduced CD90 and stimulated CD73 expression on both types of MSCs, whereas each factor induced IL-6 expression indicating its' role in IL-17/bFGF-modulated properties of SHEDs and DPSCs. All these data demonstrated that dental pulp MSCs from primary and permanent teeth exert intrinsic features, providing novel evidence on how IL-17 and bFGF affect stem cell properties important for regeneration of dental pulp at different ages.


Assuntos
Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Polpa Dentária/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Interleucina-17/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Esfoliação de Dente , Dente Decíduo/efeitos dos fármacos , Adulto , Células Cultivadas , Criança , Condrogênese/efeitos dos fármacos , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Fenótipo , Dente Decíduo/citologia , Dente Decíduo/metabolismo , Adulto Jovem
12.
Stem Cells Transl Med ; 10(7): 956-967, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33660433

RESUMO

Mesenchymal stem cells (MSCs) hold great potential in treating patients with diabetes, but the therapeutic effects are not always achieved. Particularly, the clinical factors regulating MSC therapy in this setting are largely unknown. In this study, 24 patients with type 2 diabetes mellitus (T2DM) treated with insulin were selected to receive three intravenous infusions of stem cells from human exfoliated deciduous teeth (SHED) over the course of 6 weeks and were followed up for 12 months. We observed a significant reduction of glycosylated serum albumin level (P < .05) and glycosylated hemoglobin level (P < .05) after SHED transplantation. The total effective rate was 86.36% and 68.18%, respectively, at the end of treatment and follow-up periods. Three patients ceased insulin injections after SHED transplantation. A steamed bread meal test showed that the serum levels of postprandial C-peptide at 2 hours were significantly higher than those at the baseline (P < .05). Further analysis showed that patients with a high level of blood cholesterol and a low baseline level of C-peptide had poor response to SHED transplantation. Some patients experienced a transient fever (11.11%), fatigue (4.17%), or rash (1.39%) after SHED transplantation, which were easily resolved. In summary, SHED infusion is a safe and effective therapy to improve glucose metabolism and islet function in patients with T2DM. Blood lipid levels and baseline islet function may serve as key factors contributing to the therapeutic outcome of MSC transplantation in patients with T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Transplante de Células-Tronco Mesenquimais , Dente Decíduo/citologia , Glicemia , Peptídeo C , Diabetes Mellitus Tipo 2/terapia , Humanos , Insulina , Ilhotas Pancreáticas , Células-Tronco
13.
Arch Oral Biol ; 123: 105041, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33454420

RESUMO

OBJECTIVE: The aim of this study was to develop a composite scaffold with the optimal poly(lactic-co-glycolic acid) (PLGA) and bioactive glass proportions to provide an environment for bone tissue regeneration and repair. DESIGN: PLGA-bioactive glass composite scaffolds were prepared using a salt-leaching technique with different percentages of bioactive glass (0%, 10 %, and 15 % [w/w]) with PLGA. The resulting scaffolds were characterized using scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS), and water contact angle, dynamic mechanical, and pH analysis. The scaffold biocompatibility was investigated using stem cells from human exfoliated deciduous teeth (SHED) and rat experiments. RESULTS: SEM-EDS confirmed the successful fabrication of three-dimensional PLGA-bioactive glass scaffolds. The results showed that 10 % bioactive glass with PLGA exhibited favorable properties including increased pore size, hydrophilicity, and mechanical properties. The growth medium pH was increased for scaffolds containing bioactive glass. All scaffolds were biocompatible, and 10 % bioactive glass composite scaffolding showed better attachment, growth, and proliferation of SHED compared to the other scaffolds. Moreover, it enhanced osteogenic differentiation of SHED in vitro and in vivo. CONCLUSIONS: Salt-leaching-derived PLGA-bioactive glass composite scaffolds were successfully established. PLGA with 10 % bioactive glass had adequate physical properties and bioactivity, and it could be considered as a composite for bone tissue engineering applications.


Assuntos
Vidro/química , Osteogênese , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células-Tronco/citologia , Engenharia Tecidual , Tecidos Suporte , Animais , Humanos , Porosidade , Ratos , Dente Decíduo/citologia
14.
Lasers Med Sci ; 36(2): 421-427, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32613417

RESUMO

The aim of the current study was to evaluate the proliferative effect of low-level laser therapy on long-term cryopreserved dental pulp stem cells (DPSCS) and stem cells from human exfoliated deciduous teeth (SHEDS). The DPSCS and SHEDS were divided into 2 main groups according to gallium aluminum arsenide (GaAIAs) diode laser irradiation densities as 5 J/cm2 and 7 J/cm2. Each main group was further divided into 4 groups according to laser irradiation periods as 0, 24, 48, 72 h groups. During the incubation periods, cells received laser irradiation in every 24 h according to their groups and were put into incubator after irradiation. Cell groups that were not subjected to laser irradiation were served as control groups. Viabilities of cells were determined via MTT assay at the end of all incubation periods, and data were statistically analyzed. Laser irradiation demonstrated significant effects on proliferation rate of DPSCs and SHEDs in comparison with control. Intragroup comparison data of DPSCS revealed that repetitive laser irradiation for long term (72 h) increased the cellular viability significantly in comparison with all other treatment groups; however, no significant differences were found when energy densities were compared within each time interval, except for 48 h group at which irradiation with 7 J/cm2 provided significantly higher cell viability rates of SHEDS. DPSCs showed significantly higher cellular viability than SHEDs only for the 7 J/cm2 energy density in 72 h. Longer term (72 h) repetitive laser irradiation with energy densities of 5 and 7 J/cm2 (wavelength of 980 nm) may be recommended to induce the proliferative effect on long-term cryopreserved DPSCS and SHEDS.


Assuntos
Separação Celular , Criopreservação , Polpa Dentária/citologia , Dentição Permanente , Terapia com Luz de Baixa Intensidade , Dente Decíduo/citologia , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Humanos , Células-Tronco/citologia , Células-Tronco/efeitos da radiação
15.
Aging (Albany NY) ; 12(21): 21253-21272, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148869

RESUMO

Transforming growth factor-ß1 (TGF-ß1) regulates wound healing/regeneration and aging processes. Dental pulp stem cells from human exfoliated deciduous teeth (SHED) are cell sources for treatment of age-related disorders. We studied the effect of TGF-ß1 on SHED and related signaling. SHED were treated with TGF-ß1 with/without pretreatment/co-incubation by SB431542, U0126, 5Z-7-oxozeaenol or SB203580. Sircol collagen assay, 3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) assay, RT-PCR, western blotting and PathScan phospho-ELISA were used to measure the effects. We found that SHED expressed ALK1, ALK3, ALK5, TGF-RII, betaglycan and endoglin mRNA. TGF-ß1 stimulated p-Smad2, p-TAK1, p-ERK, p-p38 and cyclooxygenase-2 (COX-2) protein expression. It enhanced proliferation and collagen content of SHED that were attenuated by SB431542, 5Z-7-oxozeaenol and SB203580, but not U0126. TGF-ß1 (0.5-1 ng/ml) stimulated ALP of SHED, whereas 5-10 ng/ml TGF-ß1 suppressed ALP. SB431542 reversed the effects of TGF-ß1. However, 5Z-7-oxozeaenol, SB203580 and U0126 only reversed the stimulatory effect of TGF-ß1 on ALP. Four inhibitors attenuated TGF-ß1-induced COX-2 expression. TGF-ß1-stimulated TIMP-1 and N-cadherin was inhibited by SB431542 and 5Z-7-oxozeaenol. These results indicate that TGF-ß1 affects SHED by differential regulation of ALK5/Smad2/3, TAK1, p38 and MEK/ERK. TGF-ß1 and SHED could potentially be used for tissue engineering/regeneration and treatment of age-related diseases.


Assuntos
Polpa Dentária/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Regeneração/efeitos dos fármacos , Proteína Smad2/metabolismo , Células-Tronco/efeitos dos fármacos , Dente Decíduo/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Polpa Dentária/citologia , Polpa Dentária/enzimologia , Humanos , Fosforilação , Transdução de Sinais , Proteína Smad3/metabolismo , Células-Tronco/enzimologia , Dente Decíduo/citologia , Dente Decíduo/enzimologia
16.
Cells ; 9(11)2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142678

RESUMO

Diabetes is a major risk factor for atherosclerosis and ischemic vascular diseases. Recently, regenerative medicine is expected to be a novel therapy for ischemic diseases. Our previous studies have reported that transplantation of stem cells promoted therapeutic angiogenesis for diabetic neuropathy and ischemic vascular disease in a paracrine manner, but the precise mechanism is unclear. Therefore, we examined whether secreted factors from stem cells had direct beneficial effects on endothelial cells to promote angiogenesis. The soluble factors were collected as conditioned medium (CM) 48 h after culturing stem cells from human exfoliated deciduous teeth (SHED) in serum-free DMEM. SHED-CM significantly increased cell viability of human umbilical vein endothelial cells (HUVECs) in MTT assays and accelerated HUVECs migration in wound healing and Boyden chamber assays. In a Matrigel plug assay of mice, the migrated number of primary endothelial cells was markedly increased in the plug containing SHED-CM or SHED suspension. SHED-CM induced complex tubular structures of HUVECs in a tube formation assay. Furthermore, SHED-CM significantly increased neovascularization from the primary rat aorta, indicating that SHED-CM stimulated primary endothelial cells to promote comprehensive angiogenesis processes. The angiogenic effects of SHED-CM were the same or greater than the effective concentration of VEGF. In conclusion, SHED-CM directly stimulates vascular endothelial cells to promote angiogenesis and is promising for future clinical application.


Assuntos
Indutores da Angiogênese/metabolismo , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células-Tronco/metabolismo , Dente Decíduo/citologia , Animais , Movimento Celular/efeitos dos fármacos , Separação Celular/métodos , Células Cultivadas , Criança , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Esfoliação de Dente
17.
Cell Cycle ; 19(23): 3231-3248, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198579

RESUMO

microRNAs have been proved to function in some processes of differentiation and the effect is favorable. At present, the differentiation of stem cells is not so ideal because of the high expenses and inaccessibility. Therefore, we explored the possibility that microRNA-221 (miR-221) affects differentiation from stem cells from human deciduous tooth (SHEDs) to neurons through Wnt/ß-catenin pathway via binding to CHD8. After collection of SHEDs, differentiation from SHEDs to neurons was conducted by neurotrophic factor induction method in vitro, followed by gain- and loss-of-function experiments. Expression of neuron-related genes in SHEDs was examined by immunohistochemistry. The relationship between CHD8 and miR-221 was detected by dual luciferase reporter gene assay. RT-qPCR and Western blot analysis were used to determine miR-221 expression, and the mRNA and protein expression of CHD8, Wnt/ß-catenin pathway- and neuron-related genes. Cell viability, and cell cycle and apoptosis were investigated by MTT assay and flow cytometry respectively. Dual luciferase reporter assay displayed that miR-221 targeted CHD8 and then affected the differentiation progression. Results of RT-qPCR and Western blot analysis showed that expression of Wnt/ß-catenin pathway-related genes increased significantly, CHD8 expression decreased in neuron-induced SHEDs after miR-221 overexpression or CHD8 silencing. In response to miR-221 overexpression and CHD8 silencing, cell viability and cell cycle entry were increased, and apoptosis was reduced. Moreover, overexpression of miR-221 or silencing of CHD8 elevated the expression of neuron-related genes in neuron-induced SHEDs. Taken together, upregulation of miR-221 promotes differentiation from SHEDs to neuron cells through activation of Wnt/ß-catenin pathway by binding to CHD8.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , MicroRNAs/biossíntese , Neurônios/metabolismo , Células-Tronco/metabolismo , Dente Decíduo/metabolismo , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/fisiologia , Células Cultivadas , Criança , Proteínas de Ligação a DNA/genética , Feminino , Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Esfoliação de Dente/genética , Esfoliação de Dente/metabolismo , Dente Decíduo/citologia , Fatores de Transcrição/genética
18.
J Tissue Eng Regen Med ; 14(12): 1869-1879, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33049108

RESUMO

Stem cells from human exfoliated deciduous teeth (SHEDs) are ideal seed cells in bone tissue engineering. As a first-line antidiabetic drug, metformin has recently been found to promote bone formation. The purpose of this study was to investigate the effect of metformin on the osteogenic differentiation of SHEDs and its underlying mechanism. SHEDs were isolated from the dental pulp of deciduous teeth from healthy children aged 6 to 12, and their surface antigen markers of stem cells were detected by flow cytometry. The effect of metformin (10-200 µM) treatment on SHEDs cell viability, proliferation, and osteogenic differentiation was analyzed. The activation of adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation Thr172 (p-AMPK) was determined by western blot assay. SHEDs were confirmed as mesenchymal stem cells (MSCs) on the basis of the expression of characteristic surface antigens. Metformin (10-200 µM) did not affect the viability and proliferation of SHEDs but significantly increased the expression of osteogenic genes, alkaline phosphatase activity, matrix mineralization, and p-AMPK level expression in SHEDs. Compound C, a specific inhibitor of the AMPK pathway, abolished metformin-induced osteogenic differentiation of SHEDs. Moreover, metformin treatment enhanced the expression of proangiogenic/osteogenic growth factors BMP2 and VEGF but reduced the osteoclastogenic factor RANKL/OPG expression in SHEDs. In conclusion, metformin could induce the osteogenic differentiation of SHEDs by activating the AMPK pathway and regulates the expression of proangiogenic/osteogenic growth factors and osteoclastogenic factors in SHEDs. Therefore, metformin-pretreated SHEDs could be a potential source of seed cells during stem cell-based bone tissue engineering.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diferenciação Celular , Metformina/farmacologia , Osteogênese , Transdução de Sinais , Células-Tronco/citologia , Esfoliação de Dente/enzimologia , Dente Decíduo/citologia , Biomarcadores/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Criança , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
19.
Lasers Med Sci ; 35(9): 1889-1897, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32572661

RESUMO

This systematic review assessed if photobiomodulation of human dental pulp tissue improved cell viability, proliferation, and/or differentiation compared with a placebo. This systematic review was conducted in line with PRISMA. PICO question was established; inclusion and exclusion criteria were established before a search had begun. A literature search was conducted through PubMed, Scopus, and Cochrane. Studies were included if published within the last 20 years in English language, or where translation was available; laser parameters were mentioned; human dental pulp tissue was studied in vitro. Studies were excluded if non-human dental pulp tissue was studied and where the study was an in vivo study. Out of the total 121 studies found, 109 were excluded. Of the twelve included studies, three full-text articles were not available despite attempts made to contact the respective authors, leaving nine studies. Four of the included studies reported the use of stem cells derived from human deciduous teeth (SHEDs), and five used those from human permanent teeth (DPSCs). Most included studies utilized InGaAlP laser with wavelengths 660 nm, and one study with 610 nm. Other types of lasers included LED InGaN, and GaAlAs. Out of all included studies, two had a moderate risk of bias, and the rest had a low risk of bias. All studies confirmed positive effects on proliferation. One study also found improved osteogenic differentiation of the stem cells derived from stem cells of deciduous teeth. After assessing SHEDs and DPSCs separately, it is found that photobiomodulation improved cell proliferation in both subgroups. Due to heterogeneity in design protocols and laser parameters, it was not possible to compare the studies together. However, this study indicated that cell viability and proliferation did improve with photobiomodulation.


Assuntos
Polpa Dentária/citologia , Terapia com Luz de Baixa Intensidade , Células-Tronco/citologia , Células-Tronco/efeitos da radiação , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Humanos , Avaliação de Resultados em Cuidados de Saúde , Viés de Publicação , Risco , Dente Decíduo/citologia
20.
Stem Cells Dev ; 29(16): 1059-1072, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32484035

RESUMO

Dental mesenchymal stem cells (MSCs) are recognized as a critical factor in repair of defective craniofacial bone owing to the multiple differentiation potential, the ability to regenerate distinct tissues, and the advantage that they can be easily obtained by relatively noninvasive procedures. Special AT-rich sequence-binding protein 2 (SATB2) is a nuclear matrix protein, involved in chromatin remodeling and transcriptional regulation, and has been reported to be as a positive regulator of osteoblast differentiation, bone formation, and bone regeneration in MSCs. In this study, we systematically investigated the capability of SATB2 to promote the osteogenic differentiation of periodontal ligament stem cells (PDLSCs), dental pulp stem cells (DPSCs), and stem cells from human exfoliated deciduous teeth (SHED). RNA-seq analysis and quantitative real-time PCR (RT-PCR) revealed that genes regulating osteogenic differentiation were differentially expressed among three cell types and SATB2 was found to be expressed at a relatively high level. When the three cell types overexpressed SATB2 with AdSATB2 infection, alkaline phosphatase (ALP) staining, ALP activity, Alizarin Red S staining, and quantification tended to increase with an increasing infection rate. It showed opposite results after infection with AdsiSATB2. RNA-seq analysis indicated that the expression of downstream osteogenic genes was affected by AdSATB2 infection and quantitative RT-PCR confirmed that nine osteogenic genes (Spp1, Sema7a, Atf4, Ibsp, Col1a1, Sp7, Igfbp3, Dlx3, and Alpl) were upregulated, to various extents, following SATB2 overexpression. In addition, quantitative PCR results indicated that SATB2 affected the expression of MSC markers. These results suggested an important role of SATB2 in the osteogenesis of PDLSCs, DPSCs, and SHED. Further research is warranted to investigate SATB2-mediated regulation of osteogenic differentiation and to evaluate the therapeutic use of SATB2 for the regeneration of defective craniofacial bone tissue.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Dente/citologia , Fatores de Transcrição/metabolismo , Adolescente , Biomarcadores/metabolismo , Diferenciação Celular/genética , Polpa Dentária/citologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/genética , Osteogênese/genética , Ligamento Periodontal/citologia , Reprodutibilidade dos Testes , Esfoliação de Dente , Dente Decíduo/citologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...